
JOURNAL OF COMPUTATIONAL PHYSICS 114, 298-307 (1994) 

Algorithm for Random Close Packing of Spheres 
with Periodic Boundary Conditions 

ALEXANDER Z. ZINCHENKO 

Institute of Mechanics, Moscow University, 119899 Moscow, Russia* 

Received March 17, 1993; revised January 6, 1994 

The isotropic algorithm is constructed for random close packing of 
equisized spheres with triply periodic boundary conditions. All pre- 
viously published packing methods with periodic boundaries were 
kinetics-determined; i.e., they contained a densification rate as an 
arbitrary parameter. In contrast, the present algorithm is kinetic-inde- 
pendent and demonstrates an unambiguous convergence to the 
experimental results. To suppress crystallization, the main principles of 
our algorithm are (1) to form a contact network at an early stage 
and ( 2 ) retain contacts throughout the densification, as far as possible. 
The particles are allowed to swell by the numerical solution of the dif- 
ferential equations of densification. The RHS of these equations is 
calculated efficiently from a linear system by a combination of con- 
jugate gradient iterations and exact sparse matrix technology. When an 
excessive contact occurs and one of the existing bonds should be 
broken to continue the densification, an efficient criterion based on 
multidimensional simplex geometry is used for searching the separating 
bond. The algorithm has a well-defined termination point resulting in a 
perfect contact network with the average coordination number six (for 
particle number N >> 1 ) and a system of normal reactions between the 
spheres maintaining the structure. These forces are the counterpart of the 
algorithm and can be used to calculate small elastic particle deformations 
in a granular medium. Extensive calculations are presented for 
50 ~< N ~< 400 and demonstrate verygood agreement with theexperimental 
packing density (about 0.637 ) and structure. ~ 1994 Academic Press, Inc. 

1. INTRODUCTION 

Random close packing (RCP) of spheres has been exten- 
sively studied for many years [ 1-19] because it serves as a 
useful model for amorphous solid glasses and supercooled 
liquids. Our main interest to the problem is, however, in its 
relevance to calculating the effective thermal conductivity of 
granular media with highly conducting inclusions [ 20]. A 
quite efficient algorithm for the solution of the thermal 
boundary-value problem for N spheres has been recently 
developed, with allowance for periodic boundary conditions 
[21 ]. So it seems attractive to apply this algorithm to corn- 
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puter simulated RCP configurations with large (up to hun- 
dreds) particle number N, thus providing, for the first time, 
a simulation test for Batchelor and O'Brien's semiempirical 
theory [ 20]. Note that any suitable computer RCP realiza- 
tions should have particles in (almost) perfect contact, 
otherwise the conductivity calculations will be strongly 
affected by the gaps between the inclusions. Roughly, it 
follows from [ 20 ] that for the average gap h the condition 
yZh/a ~< O(1 ) should be met, with a being the particle radius 
and 7 being ratio of particle-to-medium conductivities. The 
latter condition becomes a severe limitation to particle 
geometry for 7 > 102. 

From the experimental view point, the RCP is a well- 
reproducible statistical state which is obtained by long 
vibration of a large container full of steel balls and 
extrapolating the measured quantities, e.g., the packing den- 
sity (particle volume fraction) c to eliminate finite-size 
effects [ 1 ]. Computer simulation of RCP configurations is, 
however, a severe problem, which has not yet obtained a 
satisfactory solution. 

The first group of methods [ 3-8 ] use sequential addition 
of spheres to a randomly packed bed, but the attainable 
packing densities are for too low (not exceeding 0.606), 
compared to the experimental RCP density 0.6366_+ 
0.0005 [ 1 ]. The algorithms for sequential placement of 
spheres around a central [9 11 ] also do not lead to the 
experimental RCP density, as the cluster size tends to 
infinity [ 12 ]. Besides, all these methods do not allow for tri- 
ply periodic boundary conditions. Without the implementa- 
tion of periodic boundaries, it is practically impossible to 
accurately attain the limit N ~ oc in conductivity simula- 
tions. 

It is commonly believed [13 15] that the RCP density 
corresponds to the singularity in the equation of state for a 
hard-sphere fluid along the supercooled metastable branch 
and there have been simulations exploiting this idea 
[16-17]. In particular, Woodcock [17] carried out 
500-sphere molecular dynamics simulation, allowing par- 
ticles to swell gradually. As the free volume approaches 
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zero, the time required to affect further increase in particle 
volume fraction c grows exponentially [17], and the limit- 
ing packing density was obtained by extrapolating to 
infinite time. Despite the attractive agreement with the 
experimental RCP density [ 1 ], this extrapolation seems 
unsuitable for preparing RCP configurations with a perfect 
contact structure. More discouragingly, any molecular 
dynamics or Monte-Carlo-like densification procedures are 
kinetics-determined; i.e., they contain the densification rate 
as an arbitrary parameter. For N~<O(100) (the range 
tractable in conductivity simulations), when the true 
metastability is not yet formed, the final packing density is 
strongly sensitive to densiflcation rate [ 18 ] and practically 
any degree of crystallization can be obtained for sufficiently 
slow compression. 

The more recent algorithms [ 12, 19] generate high den- 
sity irregular packing of spheres from a random distribution 
of points. Eeach sphere has two diameters, the inner din 
(which is the minimum center-to-center distance between 
the spheres) and the outer one dout (which corresponds 
initially to nominal packing density c = 1 ). In each iteration 
the closest two spheres are separated along the line of cen- 
ters until their center-to-center distance equals dout and then 
d shrinks slightly. So the two diameters approach each other 
and the process is terminated once din ~> dour. The main dif- 
ference of [ 19] from [ 12] is the variable rate of contracting 
the outer diameter; that depends on some arbitrary 
parameter k. Significantly, in the final packing the particles 
are not touching and the contact network is formed only in 
the limit k ~ 0, for fixed N. The algorithm [ 12, 19 ] is very 
fast (especially in the code [22]) compared to usual hard- 
sphere fluid compression (see above) and excellent agree- 
ment with the experiment was reported in [ 12] for 3000 
simulated particles. This success is, however, misleading. 
The particles in [ 12] were not in perfect contact (unlike 
experimental structures); the average coordination number 
(defined via surface neighboring within 10 2a) was about 
5.4, instead of being slightly above the true value 6. More 
discouragingly, it was shown in [ 19] for the same order of 
particle number (N = 1000) that a much slower contraction 
of the outer diameter results in appreciably higher packing 
density, up to 0.649-0.650 (see also [23 ] ). Our calculations 
using the algorithm [ 19] suggests even a higher packing 
density, at least 0.666 in the limit k ~ 0 ,  N - - * ~  (see 
Section 3). From our viewpoint, this deviation from the 
experiment is a consequence of some crystallization in the 
algorithm [ 19] for k ,~ 1 (the latter becomes more evident 
in the force-biased algorithm [ 23 ], a further development of 
the method [ 19 ] ). It appears (see Section 3) that "rough" 
packings prepared by method [ 19] with "not too small" 
values of k can be considered as quite random (that is the 
reason for the success [ 12 ] ), but they are not close packings 
by definition. 

So, a strong motivation exists to work out a quite new, 

kinetics-independent (i.e., containing no densification rate) 
algorithm with unambiguous, single-valued convergence to 
the experimental results on RCP. Note that the gaps 
between the particles at the intermediate stage of densifica- 
tion are the very reason for partial crystallization in a slowly 
compressed hard-sphere fluid. Indeed, in the "solid region" 
c > 0.55 molecular dynamics and Metropolis' scheme [24] 
of the Monte-Carlo method act as crystallizing mechanisms. 
These mechanisms would be prohibited if the particles had 
already formed a contact network. Partial crystallization in 
the algorithm [ 19] has a similar (but more subtle) reason, 
since at the intermediate stage there are also considerable 
gaps between the spheres of the inner diameter, whatever 
small k is. So, to suppress crystallization, the main prin- 
ciples of our algorithm are (1) to form a touching network 
at an early stage and (2) to retain contacts throughout the 
densification, as far as possible. This isotropic algorithm 
resembles the physical situation when N >> 1 smooth spheres 
having been poured into a large vessel slide along each other 
until the RCP state is formed (from this viewpoint, the only 
role of small vibration is to eliminate friction temporarily). 
The algorithm allows particles to swell while keeping the 
contacts by numerical solution of the differential equations 
of densification (derived in the present work), resulting in 
collective displacement of spheres at each integration step. 
The RHSs of the equations are calculated from the linear 
system for 3N unknowns using some efficient combination 
of conjugate gradient iterations and exact sparse matrix 
technology. Roughly, the densification consists of two 
stages: ( 1 ) the initial stage, when a full structure of about 3N 
contacts is formed and (2) the main stage, when excessive 
contacts occur, and each time one of the existing bonds 
should be broken to continue the densification. (The 
description of the main stage is given first, to provide a bet- 
ter view of the whole method). The efficient criterion for 
searching separating bonds is the crucial part of the algo- 
rithm and turns out to be connected to the geometry of a 
simplex in multidimensional space. The algorithm has a 
well-defned termination point, when no bond can be 
separated after an excessive contact has occurred. The algo- 
rithm is purely geometrical, but the final state has a clear 
physical sense. Namely, a non-zero system of normal con- 
tact reactions exists which maintains the structure (against 
the confining pressure, if applied) and prohibits further den- 
sification. The calculation of these reactions happens to be 
a part of the algorithm. The latter is of physical significance 
for future studies since it allows us to calculate small particle 
deformations on the microscale quite rigorously using Hertz 
theory [ 25 ]. These deformations are known to affect drasti- 
cally the conductivity of granular media [ 20 ]. 

The numerical results obtained for 50 ~< N ~< 400 are dis- 
cussed in Section 3. All the calculations have been perfor- 
med on PC AT ACRO 386 c, with Weitek 3167 as a floating 
point accelerator and about 3 Mbytes of useful memory. 
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Albeit our algorithm is mathematically more complicated 
than the other packing codes, it is, to the best of our 
knowledge, the only one that demonstrates a single-valued 
convergence to the experimental RCP density (very close to 
0.637) and, at the same time, produces a perfect contact 
structure (with the average coordination number 6). The 
radial distribution function is also in very good agreement 
with the experiment. The concept of bonded (contacting) 
particles has a true sense in our approach, unlike condi- 
tional neighboring in [12, 19] which depends on an 
arbitrary tolerance 3. The actual gaps between bonded par- 
ticles in our algorithm that depend on the integration step 
can be made exceedingly small in practice (see Section 3). 

The intermediate stage of our densification procedure 
may not correspond exactly to any physical situation. In a 
different quasi-static approach [ 26 ] the system is densified, 
being subjected to cyclic shear, with elastic and frictional 
forces taken into account, which is a more realistic model. 
However, for three dimensions only preliminary results 
were reported, with 90 spheres in a periodic box densified to 
c=0.58,  so it is yet impossible to compare this new 
approach with the present method. 

2. METHOD 

2.1. Main Stage of the Densification 

Consider an infinite set of equisized non-overlapping 
spheres of radius a. The particle system is obtained from the 
basic random configuration of spheres $1, ..., SN centered at 
Xl, x2 .... , x u e V by the triply periodic continuation into all 
space with the periods 1,1,1 ( V = [ 0 , 1 ) × [ 0 , 1 ) x [ 0 , 1 )  
being the unit cubic cell). Let the system of spheres initially 
form a touching network with 3 N -  3 independent contacts 
and each particle having at least three neighbors. Let k/j be 
the integer vector so that x / +  k//is the center of the peri- 
odically replicated Sj that is nearest to Sg and 

ing (2) as unique functions of the particle radius a. Intro- 
ducing the "velocities" 

dx i 
da = V i  (3) 

and differentiating ( 1 ) with respect to a we have 

X,k,/k' (Vjk -- Vgk) = 4a for k = 1, 2 ..... 3 N -  3. (4) 

It is convenient to exclude an insignificant shift of the 
whole system by setting 

N 

2 Vi=O" ( 5 )  
g = l  

The linear equations (4)-(5), in general, define the 
"velocities" Vg as unique functions of a and X l ..... XN. So, (3) 
can be considered as a system of differential equations for 
xg(a) and integrated numerically, which allows particles to 
swell while keeping all the existing contacts. However, during 
the densification a new contact k = 3 N - 2  may occur. At 
that moment the system (4)-(5) with the new contact equa- 
tion for k = 3 N -  2 becomes overdetermined, and one of the 
existing bonds with k =k*~< 3 N - 3  has to be broken to 
continue the densification. Obviously, the value of k* can- 
not be arbitrary because at this moment the solution Vg of 
the system 

X~k,/k " (V/k -- Vgk) = 4a for k = l , 2  ..... 3 N - 2 ,  k # k * ,  

(6) 

should necessarily satisfy the separation condition 

Xgk,jk" (Vg, -- Vgk) > 4a for k = k*. (7) 

Xgj= xj + k+j- x i (1) 

is the corresponding center-to-center minimal vector. The 
following geometric relations then hold for the contact pairs 
(ik,Jk) (1 ~< ik <Jk <~ N): 

Xik,jk2 ---- (2a) 2 for k : 1, 2, ..., 3 N -  3. (2) 

The constraints (2) form 3 N - 3  non-linear equations for 
3N unknown coordinates xg, yg, zg and are invariant when 
an arbitrary vector constant is added to all x+. So, up to an 
insignificant translation of the whole particle configuration, 
the system (2), in general, may have only a finite number of 
isolated solutions (that presumably differ from each other 
only by the particle permutation) and, without any loss of 
generality, one can consider the sphere positions x; satisfy- 

The problem of unique and efficient choice of k* is discussed 
later (Section 2.2). Once k* has been specified and excluded 
from the list of contact bonds, we continue densification by 
the numerical integration of(3),  with the "velocities" Vg 
calculated at any moment from (4)-(5) until a new contact 
occurs and so on. Eventually it turns out, after some new 
contact formation, that no k* can satisfy the separation 
condition (7). It will be shown later that this well-defined 
termination point corresponds to random close packing 
(provided that the initial state is random) and that the 
physical normal reactions between the spheres exist to 
maintain the structure. Note that this algorithm is essen- 
tially "static"; i.e., it contains no densification rate da/dt. 
The principal idea of this algorithm is simple, but the robust 
and efficient computer realization meets some difficulties 
and is discussed below. 
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2.2. An Efficient Separation Criterion 

The most direct way to find k* would be multiple solu- 
tions of the systems (6) for all k * =  1, 2 .... until (7) is 
satisfied. However, near RCP only a small portion of bonds 
can be separated and one would have to check almost all the 
values k* ~ [ 1, 3 N -  3 ], which is extremely inefficient, espe- 
cially for large N when the analysis of contacts is the most 
time-consuming part. Besides, the choice of the first value of 
k* satisfying (7) does not generally meet the stability condi- 
tion (see below). Fortunately, a quite efficient algorithm for 
selecting all the values of k* satisfying (7) can be proposed 
based on multidimensional simplex geometry. 

Consider a more general problem. Let 

a l l X l - ~ - - . .  + a~mxm-b l  =O , 

aklXl + ... +akmxm--bk=O, 

am+ l , lX l-q- . . .  -}-am+ l ,mXm--bm+ 1 = 0  

(8) 

be a general overdetermined system of m + 1 equations for 
m unknowns xl ,  ..., x,,. Let p<k) = (x]~) ..... x~  )) be the solu- 
tion of the system (8) without the k th  equation and let 

6k=aklx]k)+ ... +akmx~)- -bk  (9) 

be the residual due to substituting plk) into the deleted 
equation. Let x* be the minimizing point for the function 

and the extremal point (V~' ..... V*) satisfies ~ F / O V  i = O, i.e., 

[ 4 a -  xij. (V* - V*)]  x,j = 0 for i = l , . . . , N ,  
j ~  

(14) 

where ~ is the whole set of neighbors of particle i, with 
allowance for periodicity. The choice of the separating bond 
is still not unique since there may be many contact pairs 
( i , j )  with x ~ . ( V * - V * ) - 4 a > 0 .  Two strategies were 
tested: (1) random equiprobable selection of the separating 
bond among those with x 0 • (V* - V*) - 4 a  > 0 and (2) the 
selection of the bond with maximum x,j. (V* - V * )  - 4 a  to 
be broken. It was found that the choice (1) leads to the 
instability of the algorithm (for N >> 1 ), whereas the strategy 
(2) was always quite successful and was then used 
exclusively in the calculations. Note that, according to (12), 
the maximum of x 0 . ( V * - V * ) - 4 a  corresponds to the 
choice of the bond which is separated with the least possible 
"velocity" x g j . ( V j - V ~ ) - 4 a .  The latter matches quite 
naturally our strategy of keeping contacts during the den- 
sification. 

It is particularly useful to interpret (14) physically by 
writing it in the form 

N,jx,7 = 0 , (15) 
j ~ ,  

where 

N o. = - 2[ x,j. (V* - V*) - 4a] (16) 

m +l  
r(x)= Z 

i=1 
( a i l x  1-k . . .  + a i m x m - b i )  2 

and let 

e k =ak l x*  + " ' "  "k -ak in  x *  --bk 

be the residual due to substituting x* into the kth equa- 
tion (8). 

LEMMA (For the proof, see the Appendix). 

~ l e l  = ~ 2 e 2  . . . . .  ~m+ 1,~m+l > 0 .  

According to (12), an efficient algorithm for searching the 
values of k with 6k > 0 requires just calculating the extremal 
point x* by a single solution of the linear system OF/Oxi= 0 
and then checking ek > 0. 

In the case of the RCP problem, 

F = ~  [ X~k,jk" (Vjk-V/k) - 4 a ]  2 (13) 
k 

(10) and 2 > 0 is an arbitrary constant. According to (15), at the 
moment of a new contact formation with 3 N -  2 independ- 
ent bonds there is a non-trivial system (which is unique, up 
to a factor) of normal contact forces maintaining the struc- 
ture. Obviously, our strategy is simply to choose the bond 

(11) with the "most negative" Nij to be broken. At RCP all N o 
are non-negative and can be interpreted as real normal reac- 
tions maintaining the particles and prohibiting further den- 
sification. The constant 2 can be connected to the average 
pressure in the bed. 

Note that during the densification and at RCP there is a 
(12) very small, but usually non-zero portion of particles having 

only three neighbors each. The degenerate case of the bond 
( i , j )  with either particle i o r j  having three neighbors 
corresponds to N / j = 0  and these bonds are explicitly 
prohibited to break in the algorithm. 

2.3. Efficient Scheme for Determining the "Velocities" V i 

Instead of solving the system (4), it is much more con- 
venient numerically to replace it by the problem ofminimiz- 
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ing the function (13) (with min F =  0) and reduce (4) to a 
new system 

- ~  [ x , j - ( V j - V ~ ) ] X i y = - 4 a  ~ x//, (17) 
j e .•i j e ~eli 

the only difference from (14) being the number of contact 
bonds ( 3 N - 3  instead of 3 N - 2 ) .  Fast numerical solution 
of (14) and (17) should use effectively the sparsity of these 
systems. Usual iterative procedures turned out to be too 
inefficient for systematic use due to great ill-conditioning at 
N>> 1. Even the most successful, conjugate gradient method 
(CGM) (in the classical form [27]) required about 3N 
iterations (or even much more, due to round-off errors) for 
an acceptable accuracy at the moments of a new contact for- 
mation, when the bond structure changes and no good 
initial approximation can be guessed. The most efficient 
strategy for the solution of (17) was found to be a combina- 
tion of the two methods: ( 1 ) direct solution by sparse matrix 
technology [28] and (2) iterative solution by precondi- 
tioned CGM (e.g., cf. [27] ) using the factorization prepared 
by method ( 1 ) at some previous integration step. 

In the method (1) we first set V t = 0 for the particle l with 
maximum coordination number, thus making the LHS of 
(17) a self-adjoint positive definite operator in the space of 
V1 .. . .  , V l  l,  V / + I  . . . . .  V N. Then the LHS matrix is fac- 
torized into Cholesky product STS, where S is an upper tri- 
angle matrix and each element of S being a 3 x 3 block. The 
particles are reordered beforehand by Tinney and Walker's 
minimum degree algorithm [28], to reduce considerably 
the number of non-zero blocks in S. The solution of the fac- 
torized system (17) can be then shifted by a vector constant 
to satisfy (5). For maximum efficiency, the sparse matrix 
technology is built in the algorithm (in particular, taking 
full advantage of the block structure of S), instead of using 
library sparse matrix packages. Due to block structure of & 
the floating-point arithmetics in factorizing (17) (or (14), 
see below) is the most time-consuming part and the one to 
be optimized. As for minimum degree algorithm, a much 
simpler implementation than in [ 28 ] suffices and takes only 
about 5 % of the total factorization time (for 50 ~< N ~< 400). 

In the method (2) the system (17) written in the matrix 
form A V = b is replaced by 

( s T )  - I  A S - I U :  ( S T )  -1  b, 

U = S V ,  

where S is the Cholesky factor obtained by method (1) at 
some previous and close integration step so that A ,~ STS. 
The self-adjoint positive-definite system(18) is solved 
iteratively by CGM, the convergence being generally very 
fast since (ST) -1 AS -1 is close to identity matrix. The 
system (17) is always solved exactly by factorization at the 

initial moment and at the moments of a new contact forma- 
tion as soon as the bond k = k* is excluded from the list of 
contact pairs. It is usually unnecessary to calculate addi- 
tional factorizations and the solution of (18) between the 
contacts takes generally one, at most two iterations, if the 
initial approximation to V i is chosen as described in Sec- 
tion 2.4. The system (14) for determining k* is always solved 
by method ( 1 ). 

Table I presents the average computer run-times T s 
(seconds) for factorizing (14) or (17) and Ti, (seconds) for 
the iterative solution of (17) (one iteration) on PC 
AT ACRO 386 c/Weitek 3167 for typical values of N. These 
results suggest that Tf scales like N 5/2 and 7",., like N 3/2. For 
this reason, the twofold factorizations at the moments of a 
new contact formation were the most time-consuming in 
our calculations for the largest values of N. 

2.4. Initial Stage of Densification 

A somewhat different technique is used to prepare the 
initial configuration of particles forming a touching network 
with 3 N - 3  independent contacts (each particle having at 
least three neighbors) so that the system (4)-(5) is uniquely 
soluble (this state is subsequently referred to as a "full con- 
tact structure"). We start from an equilibrium configuration 
of non-touching spheres prepared by the usual Metropolis' 
method [24] at some particle volume fraction Co in the 
"fluid region" Co < 0.49 [29] (to ensure complete disorder) 
and allow the particles to swell until the first contact occurs. 
After that the system (3) is integrated numerically, with new 
contacts joining one at a time. The "velocities" Vi satisfy (4), 
with 3 N -  3 replaced by a current number of contacts, and 
are calculated iteratively from (17) by the usual CGM 
(without preconditioning). The difference from the case of 
a full contact structure is that (5), (17) now form an under- 
determined system and the solution Vi depends on the initial 
approximation V~ °). The specific feature of CGM is to select 
the solution of (17) with minimum IIV-V~°)ll (in the 
Euclidean norm). To ensure the smoothness of the process 
(or the least possible jump of the "velocities" V t at the 
moments of a new contact formation) and to promote con- 

TABLEI 

Typical Computer Run-Times Tf (s) of Factorizing the System 
(18) (14) or (17) by Sparse Matrix Technology and Ti,(s ) of the 
(19) Iterative Solution of System (17) by Preconditioned Conjugate 

Gradient Method (One Iteration) on a PC AT ACRO 
386 c/Weitek 3167, for Different Values of Particle Number N 

N 50 100 200 400 

Tf 0.3 1.4 6.7 38 
Ti, 0.07 0.16 0.4 1.2 

Note. For two iterations 7",., should be increased by a factor of 1.5. 
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vergence, a linear extrapolation of the converged vectors V~ 
from the two previous integration steps is taken as Vl °) (for 
the step immediately after the contact only the last values of 
V i are used as the initial approximation). A different oppor- 
tunity of generating random normally distributed vectors 
V~ °) was also tested,.the convergence being much slower. It 
was verified that the two strategies of choosing Vti°) at the 
initial stage do not lead to any noticeable differences in the 
final RCP density and structure. 

Even when the total number of contact pairs is still less 
than 3 N - 2 ,  the system (4)-(5) is observed sometimes not 
to have a solution (the function (13) stabilizes, up to the 
machine precision, to a non-zero minimum in the course of 
iterations). Obviously, this corresponds to the case of N1 
( < N )  particles forming a full contact structure (usually 
N 1 ~ N).  In this case the strategy of Section 2.2 is applied, 
i.e., to delete the bond with maximum x 0. ( V j - V i ) - 4 a  
and solve (17) once more. So the process is continued suc- 
cessfully until a full contact structure including all the N 
particles is formed. After that the sparse matrix technology 
is used up to RCP (as described in Section 2.3) and appears 
to be, on the average, up to three to five times faster (for 
50~<N~<400) than the simple iterative solution of (14) 
and (17) by CGM. 

The most complicated phenomenon associated with the 
algorithm is the presence of the "singular point" in the den- 
sification process. When the total number of bonds is close 
to 3 N -  3, a very narrow interval of the values of a with high 
"velocities" Vg (and very poor convergence of CGM itera- 
tions) is frequently observed, especially for N ,> 1 and small 
Co. This makes the integration step extremely small (see Sec- 
tion 2.5) to keep particles in almost perfect contact (e.g., for 
N = 400 the stagnation for several days of computation was 
observed, the integration step Aa decreasing temporarily to 
10-12).  The standstill in densification is, however, accom- 
panied by noticeable tangential displacement of particles 
and the formation of new contacts. The nature of the 
"singular point" is not clearly understood. Anyway, the 
presence of this point appears to produce no crystallizing 
effect since the runs with and without a pronounced 
"singular point" led to essentially the same final packing 
density. Nor is the "singular point" of universal character, 
for its location is quite random. Fortunately, for finite 
N ~< 400, used in the calculations, the time required to pass 
the "singularity" was generally (but not always) small, com- 
pared to the total computation time. So, no special 
measures were attempted to promote the process at this 
point. 

To ensure randomness of the final state, it seems best to 
obtain a full contact structure as early as possible by choos- 
ing low values of Co. However, the variation of Co in the 
"fluid region" Co < 0.49 appears to produce no noticeable 
effect on the final RCP density and structure (see Section 3). 
So it is reasonable to set Co close to 0.49, thus reducing the 

computational cost of the initial densification stage. Note 
that in our calculations the formation of a full contact struc- 
ture and the "singular point" were generally observed for 
particle volume fractions, 0.52-0.58. 

2.5. Additional Details of the Algorithm 

The only acceptable integration method for (3) was found 
to be the simplest first-order Euler scheme, 

x/(a + Aa) = x~(a) + V i Aa, (20) 

since it never produces overlaps of bonded particles, 
provided that the "velocities" Vi are sufficiently accurate. 
Indeed, for particles i and j, 

(X 0 + V~ A a )  2 - -  [2(a + Aa)]  2 

= x 2 -  (2a) 2 + 2(Xo.. V,j-- 4a) Aa 

+ ( V 2 -  4)(Aa) 2. (21) 

If the relative "velocity" V,j = V j -  V i satisfies (4) exactly, 
then Ix~l IV01 ~>4a and (21) imply that 

(X/j + V/j A a )  2 - [2(a + Aa)]  2 

/> [ x 2 -  (2a)2] [ 1 -4(Aa)2/x~]. (22) 

Hence, the LHS of (21) is non-negative if x 2 ~> (2a) 2 and if 
the coarse condition Aa <~ a is met. 

The vectors Vo are generally very large (particularly at 
the "singular point") and an undesirable cumulative effect of 
the last term in (21) is to produce gaps between bonded par- 
ticles during the bond lifetimes. It was found best to choose 
the integration step automatically as 

Aa=q[max  V 2 41 + 4 ]  1/2, (23) 
ik ,Jk  - -  

k 

the parameter ~/= const > 0 being determined experimen- 
tally to retain gaps between bonded particles within a very 
small tolerance (see Section 3). 

The search for new contacts between unbonded particles 
is optimized by using a chaining mesh and a linked-list 
structure, a usually efficient technique in molecular 
dynamics and granular media simulations [27, 30]. In the 
present case we divide the unit cell V into M 3 equal cubic 
sub-cells, 

M = [ ( 2 a + 2 A a + 2  max IVilAa) 1], (24) 
l <~i<~N 

with [ ... ] being the greatest integer function and Aa deter- 
mined from (23). Obviously, the search of particles j inter- 
secting a given particle i ( i < j )  in the interval (a, a + Aa) 
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can be restricted to 27 sub-cells surrounding xg, and  the true 
integration step Aa' to the new contact  momen t  is found as 
the exact minimum solution (if one exists) of  the equations 
for Aa', 

Ixgy + Vo Aa'l 2 = 4(a + Aa') 2, (25) 

in the interval (0, Aa), which is one more  advantage  of  the 
simple scheme (20). 

The accuracy of  the iterative solution of  (4) is determined 
experimentally to produce,  on the average, the same effect 
on the gaps between bonded  particles as the last term in (21) 
and, besides, to ensure non-overlapping of  these particles 
after the integration step (23). If the step is reduced to Aa' 
due to a new contact  formation,  then addit ional iterations 
(and recalculation of  Aa') are sometimes necessary to retain 
bonded  particle non-over lapping after the step Aa'. 

All the calculations are performed in double precision. 
The length of  the optimized code is about  1500 
F O R T R A N - 7 7  lines. The memory  requirement for N >> 1 is 
approximately N 2 + 125N 3/2 + 970N bytes. 

3. NUMERICAL RESULTS 

Extensive calculations have been performed using our 
algori thm for different values of  r/, particle number  N, and 
the initial particle volume fraction Co (see Table II). The 
calculations are divided into 10groups,  the difference 
between the runs within a group being in the initial r andom 
equilibrium configuration. Some quantities of  interest for 
the final RCP  state include the packing density c, the 
average gap e (relative to particle radius) between bonded 
spheres and the fraction P3 of  particle having only three 
neighbors each. The angular  brackets denote averaging over 
the corresponding group  of  runs. Table II  demonstrates  that 
bonded  particles are in almost  perfect contact ,  provided 
that  the value of  r/and, hence, the integration step are small. 

TABLE II 

The Parameters of RCP Realizations 

Run 
No. N c0 r/ f <f*> <e> <P3> <e> 

1-8 50 0.45 3 x 10-4 5.920 5.940 1.8 x 10 4 0.020 0.628 
9-16 50 0.35 3x 10 -4 5.920 5.970 1.9x 10-4 0.025 0.620 

17-24 50 0.25 3x 10-4 5.920 5.985 1.8x 10 4 0.023 0.628 
25 32 50 0.25 6x 10 5 5.920 5.930 3.8x 10 5 0.023 0.623 
33-39 100 0.25 6x 10 -5 5.960 5.980 3.7x 10-5 0.019 0.631 
40-42 100 0.25 2x 10 5 5.960 5.973 1.2x 10 -5 0.020 0.629 
4345 100 0.1 7x 10 -6 5.960 5.967 6.1 x 10 -6 0.013 0.629 
46-50 200 0.45 2x10 -5 5.980 5.996 1.5x10 -5 0.012 0.633 
51 400 0.45 2x 10-5 5.990 6.020 1.6x 10 5 0.013 0.637 
52 400 0.49 7x10 6 5.990 6.015 5.9x10 -6 0.015 0.636 

Note. For details, see the text. 
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0 . 6 3 6 6  " ,  

' ~  0 6 3  

© 

~ - )  O 6 2  

Z 

061 ''""'" ......... r,,,,,,,,,l .................. l,,,,, .... 10 20 50 40 5 0  6 0  

r u n  No. (see Table II) 

FIG. 1. The density of random close-packed configurations prepared 
by the present algorithm. The points in each group of runs with the same 
N, co, ~/(see Table II) are connected. 

It should be noted that this order  of  magnitude of  e is kept 
th roughout  the whole densification. The value of  
f =  6 - 4 I N  represents the nominal  coordinat ion number,  
i.e., the average number  of  bonds  per particle in the R C P  
state. Fo r  comparison,  it is also helpful to define, for each 
RCP  configuration,  emax a as the max imum gap between 
bonded particles and the "actual" coordinat ion number  f *  
as the average number  of  all near-neighbors of  a particle 
lying within the surface-to-surface distance emaxa from it. It 
is seen from Table I!  that  for r /<  1 the difference between f 
and f *  is negligibly small. So, contact ing and non-contact -  
ing pairs can be truly distinguished in the limit r/--, 0. 

Figure 1 presents the packing density c for all the 
calculated R C P  configurations, the dispersion of  the results 
for N >> 1 being very small. The change of  Co in the "fluid 
region" Co < 0.49 appears to produce  no appreciable effect 
on c. The packing density, on the average, is an increasing 
function of  N and is definitely convergent  in the limit 
N - *  oo, r/-* 0 to a value about  the experimental result 
0.6366_+ 0.0005 [ 1 ]. Of  course, this compar ison assumes 
that gravitat ional  packings can be considered as essentially 
isotropic and simulated using triply periodic boundary  con- 
ditions. It  is generally supposed (but  not  proved)  that  far 
from the boundaries  the experimental packings contain no 
particles having only three neighbors. However,  our  algo- 
ri thm does usually produce a non-zero  port ion P3 of  such 
spheres (as well as packing codes with sequential addit ion of  

TABLE III 

The Average Portion <Pk> of Particles Having k Nominal 
Neighbors for N = 2 0 0  (Averaged over Runs 46-50 of Table II) 
and for N =  400 (Runs 51-52, Averaged) 

<P4> <Ps> <P6) <PT> (Ps> 

N= 200 0.108 0.248 0.301 0.210 0.096 
N= 400 0.114 0.253 0.280 0.196 0.119 
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FIG. 2. Radial distribution function g(r) (r is the center-to-center dis- 
tance) for five random close-packed configurations with N =  200 (runs 
46-50 of Table II). 
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FIG. 3. The comparison of simulated radial distribution functions g(r) 
for N = 2 0 0  (averaged over runs 46 50 of Table II) and N = 4 0 0  (runs 
51-52, averaged) with the experimental one [2]  for 7994 steel balls. 

particles [-4, 8]). Anyway, Table II demonstrates that the 
value of ( P 3 )  is very small, if not vanishing in the 
limit N --* oo. 

Table III presents the average portion ( p ~ )  of particles 
having k nominal neighbors for 4 ~< k ~< 8. The averaged 
results for several runs with N =  200 and N =  400 are in 
good agreement. The statistical convergence of ( p k )  for 
k ~> 9 is poor  and these values are omitted. In contrast to the 
algorithms with the sequential addition of spheres (see Sec- 
tion 1 ), our packing method produces a quite different con- 
tact distribution, much closer to the experimental one (cf. 
our Table III and Fig. 7 o f [ 8 ] ) ,  albeit the difficulty of 
measuring ( p k )  hampers the exact comparison. 

The similarity of simulated and experimental packings is 
further confirmed by the comparison of radial distribution 
functions g(r). Figure 2 displays g(r) for five different RCP 
configurations with N =  200 (runs 46-50) indicating small 
dispersion of the results for N ~> 200. Figure 3 presents the 
averaged functions g(r) for N =  200 (runs 46-50) and for 
N =  400 (runs 51-52). The results for N = 200 and N = 400 
are in excellent agreement with each other and both agree 
fairly well with the experimental radial distribution function 
[ 2 ]. In particular, the so-called split maximum is observed 
in the simulations. Some deviation from the experiment, 
especially for large r/a, may be due to a limited number of 
particles in [2] ,  since N = 8000 may be insufficient for a 
physical system (which does not allow for periodic bound- 
ary conditions) to eliminate finite-size effects. 

It is of special interest to compare our results with those 
obtained by the method [ 19], since the latter seems to be 
the only published kinetics-dependent packing algorithm for 
periodic boundary conditions which cannot lead to com- 
plete crystallization. The algorithm (see Section 1 and 
[ 19, 22 ] for detailed description) depends on N, "densifica- 
tion rate" k = r - 1, and the choice of initial uniform random 
distribution of points in a cube. For  the limited use in the 
present work, a much simpler (but far less efficient) code, 

than in [ 19, 22, 23], was written, without a chaining mesh 
and linked-list structure. The calculations are presented in 
Fig. 4 for different initial distributions. The average packing 
densities 

(c )  = 0.642 ± 0.001 

( c )  = 0.644± 0.001 

(c )  = 0.655 ± 0.002 

( N =  50, r=25000)  

( N =  50, r=50000)  

( N =  100, r = 50000) 

imply that, to a good accuracy, the value 0.644 can be taken 
as a (r --* oc)-limit for N =  50 and 0.655 as a lower bound of 
this limit for N = 100. The linear in N - 1 extrapolation of the 
values 0.644 and 0.655 suggests 0.666 as a lower estimate for 
the packing density of algorithm [ 19 ] in the limit r, N --, Go. 
The latter value is consistent with the limited number of 
calculations for N =  200, r = 105 (see Fig. 4, the average 
being 0.664). A different limit 0.649-0.650 of the packing 
density for this algorithm was reported [ 19, 23], and some 
deviation from our calculations is not clearly understood. 
Anyway, compared to our algorithm (see Table II and 
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FIG. 4. The packing density for different irregular configurations of 
spheres prepared by Jodrey and Tory's method [ 19]. 
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Fig. 1 ), the method [ 19 ] yields appreciably higher packing 
densities, which should be due to some crystallization for 
large r (especially considering that the densities as high as 
0.68 were observed for some realizations, see Fig. 4). In con- 
trast, "rough" packings (with noticeable gaps between par- 
ticles) prepared by method [ 19] with "not too large" values 
of r can be considered as quite random. For instance, when 
a configuration generated by method [19] at N =  100, 
r = 500 (with c = 0.624) was used as a starting state for our 
algorithm, the final density proved to be 0.632, close to the 
values presented in Fig. 1 for N=100.  In different 
experiments, with much higher values of r, it was observed 
that a packing prepared by method [ 19] can be very 
slightly densified by our algorithm, but the final close- 
packed state contains some particles with less than three 
neighbors (and even free spheres). So, along with partial 
crystallization, the effect of algorithm [19] for large r is 
likely to produce some "holes." The principal feature o f  our 
algorithm is that any crystallization in the final state (which 
was presumably avoided in our calculations) may be due 
only to some order in the initial configuration, whereas the 
densification procedure [ 19 ] (as well as "hard-sphere fluid" 
compression, either by molecular dynamics or Monte Carlo 
method) is partially crystallizing itself. The fast method 
[ 19 ] could be used to prepare initial states for our algo- 
rithm, thus reducing a total computation time. However, 
the appropriate choice of r is not obvious and this idea was 
not exploited in our calculations. 

The experimental packing density 0.6366 + 0.0005 [ 1 ] is 
appreciably lower than the (N, r ~ ~)-limit for the algo- 
rithm [ 19 ] and slightly below the best Berriman's estimate 
0.642-0.645 (based on some extrapolation of the radial dis- 
tribution function from the "fluid region" c < 0.49 to much 
higher densities) [ 15 ]. This provoked a discussion [ 15, 19] 
of whether a true maximum of random close packing den- 
sity was achieved in the experiments [ 1 ] with steel balls, or 
some friction inhibited progress towards the densest 
possible packing. The calculations using our algorithm 
indicate, however, that the experimental value 0.637 need 
not be revised, at least, considerably. 

used to calculate small elastic particle deformations by 
Hertz theory. 

A relatively long computation time, due to a large num- 
ber of bond separations, is, probably, the only discouraging 
feature of our algorithm. A typical run took from hours 
for N =  100 to several days for N- -200  on 
PC AT ACRO 386 c/Weitek 3167. Each of the two variants 
for N = 400 took even more than a month of calculations. 
However, we are not aware of any other published algo- 
rithm which would have demonstrated an unambiguous con- 
vergence to the experimental results on random close pack- 
i/ag. Despite the computational cost, a lot of random close- 
packed configurations have been calculated (see Table II 
and Fig. 1 ) and they are available on the request from the 
author. The computed configurations can be used, in par- 
ticular, in simulating the effective conductivity of granular 
media, both for rigid and for slightly deformable inclusions. 

Finally, it seems feasible to develop a similar isotropic 
algorithm for close packing of spheres with the average 
coordination number four, which may resemble pouring 
absolutely rough particles into a large vessel without vibra- 
tion. 

APPENDIX: PROOF OF THE LEMMA 

Let (y~, Y2 . . . . .  YN) be a new coordinate system with the 
origin pCm+~) and basis vectors ek=P~k)--Ptm+~) 
(1 <~k<<,m). All the points P"), except p~k), satisfy the k th  
equation (8). Hence, the k th equation of the system (8) for 
1 ~< k ~< m is equivalent to Yk = 0. Besides, the last equa- 
tion (8) determines a ( m -  1)-dimensional hyperplane con- 
taining p~l) ..... p~m) and should be equivalent to 
Yl + "" +Ym = I. SO, the transformation from x i to y~ is of 
the form 

a k  l X 1 -~- . . .  --}- a k m X m  - -  b k 

=2kYk for l<~k<~m, 
(A1) 

a m +  l, l X  1 "q- . . . . . . I - a m + l , m X m - b m + l  

---- ~ 'm+ 1( 1 - Y l  . . . . .  Ym) 

4. CONCLUDING REMARKS 

An isotropic kinetics-independent algorithm has been con- 
structed for random close packing of equisized spheres with 
triply periodic boundaries. The algorithm results in a perfect 
contact network with the average coordination number six 
(for particle number N >> 1 ) and a system of normal reac- 
tions between the spheres maintaining the structure and 
prohibiting further densification. Both the experimental 
packing density (about 0.637) and radial distribution func- 
tion are well reproduced by our algorithm. The normal for- 
ces in the final state are a part of the algorithm and can be 

with some non-zero constants 21,22 . . . . .  2 m +  1 (the equa- 
tions for 2j can be written but are not required here). Mini- 
mizing the function (10), written in the new coordinates, we 
have for the extremal point x* . . . .  (y*,  ,Ym),* 

2 * _ _  2 2i yi - 2 m + ~ ( 1 - y *  . . . . .  y*) (1 ~<i~<m). (A2) 

The solution of (A2) yields 

. ~ * - - 2  - 2 ~ 2  + 1  O ,  i - -  i A m  

D =  1 +2,,+1 
k = l  
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Hence, the residuals ( 11 ) 
1 2 ei=2 ~ 2. ,+ID for 1 <~i<<.m, 

(A4) 
/~m+l =~m+ l D" 

On the other hand, the residuals (9) take the form 

6i=2~ for l ~ < i < ~ m + l .  (A5) 

The proof of (12) is completed by multiplying (A4) 
and (A5). 

The statement (12) of the lemma has a clear geometrical 
sense. Consider an m-dimensional simplex T with vertices 
ptl) ..... p~m+ ~), i.e., the minimal convex set containing all 
P~) (see Fig. 5 for m = 2). The coordinates y~, ..., Ym yield 
the canonic description [ 31 ] of the simplex interior 

y i > 0  for 1 <~i<~m 
(A6) 

y~+ -.. + y m <  1. 

The function (10) can be written as 

2 (A7) F ( x ) = / l l d ~ +  ... +/~m+ldm+l,  

where dk is the distance from x to the plane of the 
(m - 1)-dimensional face opposite to p(k)  a n d / ~  are some 
positive constants. The minimum of (A7) is always attained 

" inside the simplex since the extremal point (A3) satisfies 
(A6) (that is the reason for ei and 6i to be of the same sign). 
On the other hand, any internal point x of T satisfies the 
constraint 

Sldl + . . .  + S m + l d m + l = c o n s t = m V ,  (A8) 

where Si is the measure of the ( m -  1)-dimensional face 
opposite to P") and Vis the total simplex volume (see Fig. 5 
for m = 2 ) .  Minimizing (A7) as a function of dl, ...,dm+~ 
under the constraint (A8) yields i t i d i / S i = c o n s t .  On the 
other hand, Si = m V / H ,  where Hi is the distance from p~i) 
to the opposite face plane. Hence, 

I~1 dill1 . . . . .  lure+ ldm+ 1Hm+ l (A9) 

which is just another form of (12). These arguments 
generalize the elementary construction of the point inside a 
triangle with minimum d 2 + d 22 + d 2 [ 32 ]. This geometrical 
approach is, however, not quite rigorous (since the exist- 
ence of the point x e T satisfying (A9) should be proved), 
compared to the simple algebraic proof given above. 

p(Z) 

p(~) p(a) 

FIG. 5. Proof of the Lemma. 
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